
Responsive Web Design: overview
nigelbuckner 2014

Responsive web design refers to a web page adapting to the screen size of
the device being used to view it, whether that device is a desktop, tablet or
mobile. In other words, the page responds to the user’s environment.

Responsive design illustrating how content can be re-ordered

There are two main ways to achieve responsive web design:

• Creating a separate build for mobile devices and desktops
• Using media query breakpoints for different size screens

Separate build
This is where there is more than one physical version of a web site, for
instance, a desktop version and a jQuery mobile version. The separate build
method requires more work. This could be used where a single set of content
is not appropriate or not adaptable to differing screen sizes. Strictly speaking
this method is not responsive in the true sense in that one set of content does
not adapt to the viewing environment. This method uses a script, such as
JavaScript or PHP, to detect the device used to access the site.

Media query
Media query is the method by which true responsive design is achieved. A
media query is a statement in CSS that is called into effect by the size of the
browser and then applies appropriate styles for that size. Breakpoints are
defined screen widths such as 320, 640 and 960px. Styles are created to
arrange content for display at these sizes. The styles are defined either within
a single CSS document or as separate CSS documents. In either case,
changes in the layout are achieved by employing the cascade. That is, the

same selectors are used in the CSS for each breakpoint but, through use of
the cascade, the properties are adapted to alter the effect on layout.

Examples of media queries

Example 1

The following is an example of a media query that is included within the main
CSS document for the page:

@media only screen and (max-device-width: 480px) { }

The styles for the specific device width are then entered between the curly
braces like so:

@media only screen and (max-device-width: 480px) {
 #wrapper {
 width: auto;
 }

 #header {
 background-image: url(img/image-file.jpg);
 height: 93px;
 }

 #header h1 {
 font-size: 140%;
 }

 #content {
 float: none;
 width: 100%;
 }

 #navigation {
 float:none;
 width: auto;
 }
 }

Example 2

The following is an example of a link to a separate CSS:

<link rel="stylesheet" type="text/css" media="only screen and (max-device-width: 480px)"
href="small-device.css" />

Here, the media query is included in the link i.e. max-device-width: 480px

Example 3

Dreamweaver CS6 uses a method that employs a CSS document as a media
query, which then links to separate CSS documents for particular sizes. The
statements in the media query document look like this:

@import url("tablet.css") only screen and (min-width:640px) and (max-width:951px);
@import url("desktop.css") only screen and (min-width:960px);

Designing for a responsive layout
At the design stage (prior to build), there is an accepted philosophy that says
design for mobile content upward. Content at the smallest size is likely to be
in one column. Content can be rearranged into further columns for tablet and
desktop display.

At the build stage, create the phone version first and then create the larger
versions at the required breakpoints.

In regard to sizing for main structural container elements such as <divs>,
depending on the requirements of the layout, a general approach is that for
desktop you can use fixed widths and for the smaller breakpoint layouts you
can use percentage or width: auto.

Think about making image and media content responsive in size in order to
expand or contract as required. Any large background images in the desktop
version, such as ones that may be used in headers, can be substituted with
smaller versions from the CSS or removed completely. This will help with
bandwidth on a mobile device.

In responsive design the:

• Content can be resized
• Number of columns changed
• Content re-ordered

Text sizing
An accepted good practice for text sizing is to set the default size to 100%
and use ems for line height, e.g. body { font-size: 100%; line-height: 1.5em; }.
Then, if you need to alter text in a particular region in the page use ems.

This approach is based upon the possibility of an end user altering the default
font size. In this case, larger default text will not ‘break’ the layout. The default
of 100% will be what the browser dictates and the em measurements work in
proportion to that.

A browser default of 16px is equivalent to 1em. The line height in the example
above is equivalent to 24px –
24 ÷ 16 = 1.5.
A font size of 0.75em is equivalent to 12px –
12 ÷ 16 = 0.75 or 0.75 x 16 = 12

